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A computer code is described that solves differential equations of the form B -yr= /I for a 
single-valued solution f, given a toroidal three-dimensional divergence-free field 13 and a 
single-valued function II. The code uses a new algorithm that Fourier decomposes a given 
function in a set of flux coordinates in which the tieId lines are straight. The algorithm 
automatically adjusts the required integration lengths to compensate for proximity to low 
order rational surfaces. Applying this algorithm to the Cartesian coordinates defines a trans- 
formation to magnetic coordinates, in which the magnetic differential equation can be 
accurately solved. Our method is illustrated by calculating the Pfirsch-Schliiter currents for a 
stellarator. ,3? 1988 Academic Press. Inc. 

I. INTRODUCTION 

Magnetic differential equations constitute an important class of problems in 
magnetohydrodynamics (MHD) [ 1,2]. These are equations of the form 

where B is a given divergence-free vector field, 17 is a given source term, and ./” is a 
function to be determined. Such equations reflect the anisotropy of the physics in a 

conducting medium immersed in a strong magnetic field. Motion along the field 
lines of B is fundamentally different from motion transverse to these lines. Of par- 
ticular interest for toroidal magnetic confinement of plasmas is the situation where 
a field line winds about indefinitely on a toroidal surface. The solution of Eq. (I) is 
then sensitive to small errors in the representation of the B .V operator, particularly 
near surfaces with low order rational winding number of the field line, f. Accurate 
solution of Eq. ( 1) therefore poses a formidable numerical challenge. 

In this paper we present a numerical technique, and its implementation as a com- 
puter code. for accurately solving magnetic differential equations in a toroidal 
geometry, i.e., for three-dimensional domains that are periodic in two spatial direc- 
tions. Two important examples that we discuss are the equation fcr the pressure, 

B.Vp=O, :2 I 
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and the equation for the stream-function of the current density, 1’ [2] 

B.Vv=p’+ (g’+/r) B .V& (3) 

where p’(Y) = dp/dY is the pressure profile, g’( !Y) is the poloidal current profile, 
r(Y) is the toroidal current profile, and 4 is the toroidal angle. The immediate 
motivation for the work described in this paper was the need to solve these 
equations for a three-dimensional MHD equilibrium code [3]. 

Our approach for solving Eq. (I) is to construct numerically a transformation 
from Cartesian coordinates to a set of flux coordinates in which the field lines are 
straight (“magnetic coordinates”). A Fourier transform of Eq. (1) in these coor- 
dinates reduces it to a trivially soluble algebraic equation. The inverse of the coor- 
dinate transformation to magnetic coordinates then yields the solution in Cartesian 
coordinates. At the heart of the solution is an algorithm which constructs a Fourier 
decomposition in magnetic coordinates of any given function. The algorithm 
automatically adjusts the required integration lengths to compensate for proximity 
to low order rational surfaces. Fourier decomposition of the Cartesian coordinates 
defines the transformation to the magnetic coordinate system. 

An algorithm for Fourier decomposing any given function in magnetic coor- 
dinates has been introduced for 3D transport applications [4, 51. Some aspects of 
that algorithm are incompletely automated. In addition, no estimates of the 
accuracy of the numerical Fourier coefficients have been given in this work. Even if 
such estimates are obtained, the algorithm has no provision for improving the 
accuracy, let alone for obtaining a specified accuracy. These deficiencies did not 
pose major problems in the context of a Monte Carlo transport code, but are 
clearly undesirable. In the context of our work on three-dimensional MHD 
equilibrium, they are unacceptable. We have adapted some of the ideas in this 
earlier work to develop our algorithm. 

In this paper we assume that the field lines of B lie in a set of nested flux surfaces. 
This is implicit in our assumption that a magnetic coordinate system exists. The 
assumption is appropriate, for example, for stellarator vacuum fields, which are 
designed to have negligibly small islands and stochastic regions. More general 
three-dimensional magnetic fields can have large islands and stochastic regions. 
Even in the general case, however, any toroidal volume of interest can be decom- 
posed into a set of regions with nested flux surfaces plus a set of stochastic regions. 
(Regions whose size falls below our spatial resolution are ignored, so that the num- 
ber of different regions that must be considered remains finite.) Physical quantities 
of interest are constant in the stochastic regions, so there is no need to solve Eq. (1) 
there. 

We could? in principle, solve the general case by decomposing as just described 
and applying the algorithm discussed in this paper to each of the regions separately. 
In fact, it is also often physically reasonable to take the quantities of interest con- 
stant in the magnetic islands. For example, the growth of islands tends to flatten the 
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current protile. If the quantities of interest are taken to be constant in the islands 
and the stochastic regions, it is only necessary to solve Eq. (I ) in those regions 
where nested flux surfaces enclose the magnetic axis. We have recently made some 
progress in implementing such a procedure [3]. We will not discuss this more 
general case further in this paper and deal only with a single region of nested flux 
surfaces. The focus is on the details of our method for constructing Fourier decom- 
positions in magnetic coordinates, dwelling particularly on the issues raised by the 
presence of rational surfaces. 

The assumption of nested flux surfaces is equivalent to postulating the existence 
of a single valued function ‘P(x,y, z) such that B.VY’=O. A coordinate system 
(Y, 0, @), where 0 is a poloidal angle and @ is a toroidal angle, is called a “flux 
coordinate system.” For toroidal plasma confinement devices, Y’ is often taken to 
be the net toroidal (or poloidal) flux enclosed by a magnetic surface. Several rhree- 
dimensional MHD equilibrium codes currently use flux coordinates [6-g]. These 
codes express the magnetic field in terms of the coordinates and solve for the coor- 
dinates directly. In our case we are given the held and want to construct the 
corresponding coordinates. Our field could come, for example, from a vacuum held 
solver, or from a 3D equilibrium solver not written in flux coordinates. 

In addition to requiring that the coordinates we construct be flux coordinates, we 
impose the condition that the magnetic field lines be straight in these coordinates 
[9, lo]. Coordinates which satisfy these two conditions are sometimes called 
“magnetic coordinates.” Magnetic differential equations have a particularly trac- 
table form in magnetic coordinates, as we will discuss in Section II. 

The remainder of the paper consists of four sections. In Section If, we describe 
our method for solving magnetic differential equations numerically. The method 
requires an algorithm for Fourier decomposing any given function in magnetic 
coordinates. That algorithm is presented in Section III. Numerical accuracy is dis- 
cussed in Section IV, focusing particularly on the issues raised by the presence of 
low order rational surfaces. Finally, we present an illustrative solution of Eq. (3 ) for 
a stellarator vacuum field in Section V. At the end of the paper, for reference, we 
have collected together in one table the most important numerical parameters 
discussed (Appendix B ). 

II. SOLUTION OF MAGNETIC DIFFERENTIAL EQUATIONS 

To solve magnetic differential equations, we take advantage of the fact that 
Eq. ( 1) has a particularly tractable form in magnetic coordinates. In magnetic coor- 
dinates with the toroidal flux as radial coordinate, B has the canonical form 

where t( Yj is the rotational transform (winding number or twist) of the magnetic 
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field line on a given !P surface, and 0 and @ are, respectively, poloidal and toroidal 
angles. Substituting Eq. (4) into Eq. (1) transforms Eq. (1) to the simple form 

where d’= l/B@ = l/B. V@ is the Jacobian of the transformation from Cartesian 
to magnetic coordinates. Because the coeflicients on the left-hand side of Eq. (5) are 
independent of the angles (that is, the field lines are straight in this coordinate 
system), Fourier transformation of the equation yields an algebraic equation for the 
Fourier coefficients off in terms of the Fourier coefficients of the right-hand side. 
To determine f uniquely, a constant of integration must be specified on each flux 
surface, corresponding to the n = 0, m = 0 Fourier component off (where n and m 
are, respectively, the toroidal and poloidal mode numbers). Note that for a more 
general flux coordinate system in which the field lines are not straight Fourier 
transformation would have led to a convolution and inversion of a matrix to obtain 
the solution. 

Equation (4) does not uniquely specify the angles. We have found it convenient 
to choose @ to be the uniform toroidal angle 4 of a cylindrical coordinate system. 
Throughout the rest of the paper we will retain the notation that (!P, 0, @) denotes 
a general coordinate system having toroidal flux as the radial coordinate, but with 
no assumptions about the toroidal angle, while (!P, 0, 4) denotes a magnetic coor- 
dinate system having the uniform geometric toroidal coordinate. 

The key to our numerical solution of Eq. (1) is an algorithm which constructs a 
Fourier decomposition of any given function in magnetic coordinates. The Fourier 
components of xv/r determine those off, and therefore determine the solution f as 
a function of 0 and 4 on each flux surface. The Fourier decomposition of the Car- 
tesian coordinates x, J’, and -7 specifies their Fourier components as a function of 0 
and d on each flux surface, thus determining the transformation x( !P, 0, d). 

To Fourier decompose numerically in magnetic coordinates, we make use of an 
insight due to Boozer [4]. He observed that if a magnetic field line covers a good 
flux surface, the one-dimensional Fourier decomposition of any function along the 
field line contains sufficient information to construct the two-dimensional Fourier 
representation of that function on the flux surface in a coordinate system where the 
field lines are straight. The difficult part of Boozer’s scheme is the identification of 
the two-dimensional Fourier modes with those in the one-dimensional Fourier 
decomposition of a function along a given field line. While this can be done by 
hand [S], almost any practical application of a code to solve Eq. (1) requires an 
automated method for making this identification. In Section III, we present a com- 
pletely automated procedure for calculating the Fourier representation of any 
function on the magnetic surfaces of B. The crucial step is an iterative algorithm for 
the precise determination of the rotational transform that requires a minimum of 
integration along field lines. Knowledge of [ allows us to identify directly the 
discrete spectral lines of the Fourier transform along a field line with the 
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corresponding spectral lines in the two-dimensional Fourier transform on the 
magnetic surface. 

In following field lines, the value of the magnetic field is required throughout the 
toroidal domain. For typical applications, the field is known only on a grid, and 
some interpolation scheme is required. Even when the field is known everywhere ic 
principle, as when the held is calculated by the Biot- Savart law from a set of coils, 
it may be more efficient to calculate the field first at a discrete set of points and then 
to interpolate values elsewhere from these points. This is done in the Gourdon code 
[ 1 I ] for example, where the magnetic field is first calculated on a rectangular grid 
and then linearly interpolated to intermediate points. Our code uses an exponec- 
tially accurate (Fourier) interpolation in the poloidal and toroidal coordinates, and 
a second-order accurate interpolation in the radial coordinate. The details are 
described at the end of Section III. 

In this paper we make the simplifying assumption that the magnetic field is sym- 
metric with respect to double reflection through an appropriate poloidai and 
equatorial plane. This is often the case for magnetic fields of interest. For example. 
stellarator fields almost always have this symmetry. Generalization of our algorithm 
to the nonsymmetric case is straightforward. Only our method for finding the 
magnetic axis would have to be modified, as discussed in Section III. 

To solve Eq. (1) numerically throughout some given toroidal region, we follow 
magnetic field lines on a set of flux surfaces which provide a radial coordinate grid 
for the region. It is convenient to define a radial coordinate p(P) which is uniformly 
spaced between these surfaces. We calculate U(p) from the ratio of the Jaccbians 
between Cartesian and flux coordinates with p and ‘Y as independent variables, 
respectively. Fourier decomposition of the Cartesian coordinates determines 
x(p, 0, d). By numerical differentiation, we calculate the covariant basis vectors and 
then the Jacobian for the flux coordinates with p as independent variable, 

From Eq. (4). we see that the Jacobian for flux coordinates with Y as the indepen- 
dent variable is determined by the Bd component of the magnetic fields, 

The ratio of the two Jacobians is Y’(p). In practice, the numerical evaluation of the 
two Jacobians gives slightly different angular dependencies due to numerical errors. 
We take 

d!P/dp = (~O(l/~‘P)) = ($PB@), (7) 

.where the brackets (,.. > denote an average over poloidal and toroidal angles. 
Equation (7) determines the toroidal fIux inside each flux surface. The poioidal 
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flux is given in terms of the toroidal flux by the rotational transform. Our algorithm 
for calculating the rotational transform will be described in Section III. 

We represent all functions in magnetic coordinates as a two-dimensional Fourier 
sum on each of L + 1 magnetic surfaces. The surfaces are labeled by the discrete 
index 1, where 0 d I d L. The surface I= 0 corresponds to the magnetic axis, while 
I= L corresponds to the outer boundary of the toroidal domain. Each Fourier 
expansion has the form 

where N is the number of periods, and where the indices 12, 11~ obey the inequalities: 

InI d A’; O<m<Al. (9) 

The values of L, .L!, and ,V are specilied as input parameters to the code. The 
asymmetric bounds in Eq. (9) are motivated by the symmetry properties of the 
Fourier coefficients aR, m, 

at, m = +at,,, -m. 

This follows from the even/odd symmetry of the functions with respect to double 
reflection in 0 and in 4. The quantities s, BQ, and Bd (and hence f y = l/B") have 
even symmetry while y, z, BP, and h have odd symmetry. In this representation, one 
solution to Eq. (5) is 

f(k&,, 0, d)= x (gpy’l)f,~m 
,t,,n (nN-m) 

cos(nNq5 -m@). 

The general solution consists of this solution plus any function of p. 
The representation of Eq. (8) needs (L + 1 )(J?’ + 1 )(2d,V + 1) modes stored, 

roughly half the coefficients that would be needed if we did not take advantage of 
the symmetry properties. The redundant elements ai, 0 and at,, 0, n > 0, are retained 
to simplify the code. For nonaxisymmetric fields (,V >O), the presence of these 
redundant terms provides a convenient check on the symmetry of our results. 

As illustrations, we now discuss the solution of Eqs. (2) and (3). Equation (2) is 
a homogeneous magnetic differential equation. The solution of such an equation is 
constant on each magnetic surface. The value of the pressure on each surface is an 
integration constant which is given, typically as a function of the flux. Equation (7), 
together with the equations defining the transformation to magnetic coordinates, 
then determines the pressure everywhere in the region of interest. 

Equation (3) follows [2] from the MHD equilibrium equations: 

JxB=Vp, (11) 

VxB=J. (121 
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The current is divergence free and satisfies J .V!P =O. It follows that J can be 
written in magnetic coordinates in the form 

J= I’(Y)-% VY’xVO+ $--g(Y) V4xVY. 
( a”> ca’! I > 

Here I’ is a single-valued function to be determined, while I’(Y) = dI/dY and 
g’( Yj = dg/dY are the profiles of the net toroidal and poloidal current, respectively. 
Typically, either I’( Y) or g’( Y) is given, and the other can then be determined from 
the equilibrium equations. For our purposes here, we may regard both these 
profiles as given. Substituting Eq. (13) into Eq. (11) gives Eq. (3). Following the 
prescription given at the beginning of this section, we obtain the solution, 

which we have expressed in terms of the Fourier components of the Y Jacobian, 

2’( Y, 0, f$) = c ,$y,,, cos(lzLvfj -mQ). 1151 
PI. I?1 

We will discuss an explicit solution for the current in the ATF stellarator in 
Section V. 

III. FOURIER DECOMPOSITION IN MAGNETIC COORDINATES 

As we have discussed, the crucial step in our code is the determination of the 
two-dimensional Fourier transform in magnetic coordinates from the one-dimen- 
sional Fourier decomposition along a field line. In this section we show how a 
precise determination of the rotational transform allows us to calculate easily the 
required two-dimensional Fourier transform. We also describe our algorithm for 
efficiently evaluating the rotational transform. 

We begin by observing that Eq. (4) can be written in the form 

B=VYxV(O-@)), 

where we have now specialized to our choice of the uniform toroidal angle 4 as the 
magnetic coordinate @. This equation implies that a field line is defined by the 
intersection of two surfaces, a constant Y surface and a constant 0 -[q5 surface. In 
these coordinates 0 -14 is constant along the field lines. (This is equivalent to 
saying that the field lines are straight.) That is, we can write 0 =td on any given 
field line, since the constant can be set to zero by shifting a coordinate origin. 

It follows that there is a simple relation between the one-dimensional Fourier 
transform along a field line of a function a and its two-dimensional Fourier trans- 
form in magnetic coordinates. Since a( Y, 0, 4) is periodic in the two angles. with a 
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periodicity length of 27c/N in the toroidal direction and 27r in the poloidal direction, 
it can be represented by a Fourier series on each flux surface: 

4% 034) = c urz, ,( Y) sin ( > 
(nAq -mO). 

,I, m cos (16) 

As discussed in the previous section, we have assumed that a has odd (sine) or even 
(cosine) symmetry with respect to the double reflection 0 --f -0 and CJS -+ --I$ (the 
generalization to the nonsymmetric case is straightforward). If we evaluate a along 
a field line (which lies in a constant Y surface), 0 and CJ~ are linearly related as 
described above. Equation (16) then assumes the form: 

(17) 

The Fourier spectrum of the function a evaluated along a field line therefore con- 
sists of a set of discrete lines. The frequencies of these lines can be used to determine 
,L The amplitudes of these lines determine the two-dimensional Fourier coefficients 
in magnetic coordinates, a,. nl in Eq. (16). Given B at all points in a toroidal 
domain, it is easy to follow field lines numerically to high accuracy. A fast Fourier 
transform (FFT) can then be used to obtain the spectrum along the field lines, and 
thus the Fourier representation in magnetic coordinates for the corresponding 
magnetic surfaces. 

In practice, given only the one-dimensional Fourier representation of a function 
along a field line, the identification of the spectral lines with those of the two- 
dimensional representation on the magnetic surface containing the field line is not 
straightforward. This identification becomes complex and unreliable when the 
smallest frequency difference between the spectral lines is less than the minimum off 
and 1. Further, one must take into account the uncertainty due to numerical error 
in the frequencies of the spectral lines, which is not known a priori. 

Our solution is first to determine i( Y’) to high accuracy. The mode numbers m 
and n associated with each of the spectral lines in the one-dimensional spectrum, 
Eq. (17), can then be identified uniquely. For this purpose, an efficient method for 
calculating ,z’ is needed. A conventional approach uses the definition of the transform 
as a winding number and determines numerically lim(O/b) as 4 -P CO, where 8 is any 
convenient coordinate which increases by 27~ in going around the magnetic axis, 
and which is single valued in the toroidal direction. This method for evaluating I 
can be costly since it converges linearly with the length of the field line and many 
orbits around the torus may be needed. The computer time consumed by the code 
for this method increases somewhat faster than linearly with the distance over 
which the field lines must be followed, because the local error in the numerical 
integration must be decreased as the integration length is increased to give a fixed 
global integration error. 

To improve this procedure for calculating #, we observe that 0 -ti$ is a periodic 
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function and can be written as a Fourier series of the form of Eq. (16). This 
expression can be used to improve systematically an estimate for j given by 
lim(,fJ/d). The improved estimates of I converge towards the correct value exponen- 
tially with the field line length. We therefore determine f on each flux surface by an 
iterative procedure that chooses f at each step to minimize the expression 

i 

1’ 
FU)=C B(dji)-l$j- C %,,, SinCW-bni djl( . (18) 

i ,I, ,,I 

Here the outside sum goes over equally spaced sample points, bj=jA& along the 
field line. The values %(dj,,) have been determined by following a field line. The inner 
sum goes over the discrete range, - ,t‘ d n < ,2’, 0 < , rn < .A. For the first step we 
take all %,, no = 0. At each subsequent step, we use the current value of $, together 
with an FFT of the quantity 6 -#& to determine the %:,. m. Typically two or three 
iterations suffice. The convergence criterion is discussed at the end of Section IV, 

For the minimization of F. we use a NAG library routine [12] (eO4bbfj which 
makes use of derivative information. From Eq. (18) it is straightforward to obtain 
an expression for the derivative of F with respect to j. In following field lines: the 
rate at which we sample points is determined by the shortest wavelength we can 
resolve in our finite Fourier representation, 

where Net’- and .X are the maximum toroidal and poloidal mode numbers, and 
III max is the maximum value of 1~1. The code requires an upper bound on the 
rotational transform to be specified as an input parameter to determine the 
sampling rate. 

Rapid convergence of our algorithm to calculate I occurs to the extent that the 
dominant dependence of F on 1 comes from the ,@5 term. This can be guaranteed by 
following the field line sufficiently far. In practice, the distance for which the 5eld 
lines are followed is determined by the accuracy requirement of the one-dimensional 
FFT along the field lines, as discussed in Section IV. This distance is sufficient to 
guarantee an accurate initial guess for the algorithm. The algorithm is efficient in 
making optimal use of the information obtained by following a held line over a 
given distance. 

We illustrate the convergence and accuracy of the algorithm for a simple model 
field. We consider an analytical field of the form of Eq. (41, with 

Y=F-=, 0 = 8 + + %= sin 2%. 

where 8 is the uniform geometric poloidal angle. In this expression, # and 8: are 
constants to be specified. The field is divergence free, but of course not necessariiy 
an equilibrium field. For our example we take I = 0.14 and B2 = 0.2. We will see in 
Section V that this 8 perturbation is considerably larger than that for a typical 
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stellarator vacuum field. We run the code with 10 poloidal modes, following the 
field lines for nine toroidal circuits of the torus. For this case, we find that the 
accuracy with which the code determines i is worst on the outermost flux surface 
(Y = 1). On this surface, the first iteration of the algorithm gives %= 0.13968479, the 
second gives %= 0.13999842, and the third iteration gives [ = 0.13999990. Subsequent 
iterations give only a slight further improvement. The error in the final result is 
attributable to the finite number of poloidal modes retained. 

We now explain how the various quantities X, y, Z, h, 9 “, and 8 are evaluated 
along the field lines of B. The field lines are followed in a user-specified toroidal 
coordinate system (r, 9, d), where 4 is constrained to be the uniform toroidal angle. 
The angle 9 in this coordinate system differs, in general, from both the magnetic 
coordinate 0 and the uniform geometric angle 8. In particular, the origin of the 
(r, 9,d) coordinate system does not generally coincide with the magnetic axis, while 
8 measures an angle about the magnetic axis. The (I, 9,4) coordinates can be 
specified as input to the code by giving the Fourier transform of the Cartesian vec- 
tor x in 9 and 4 for a set of equally spaced surfaces in r. As a default, the code takes 
9 and 4 to be uniform poloidal and toroidal angles, and takes r to be the distance 
from a coordinate axis whose location is indepenent of 0. The location of this axis is 
determined by specifying the aspect ratio of the toroidal region. The option to 
define a different coordinate system allows for efficient representation in domains 
whose boundaries are far from circular. 

The contravariant components of the magnetic field, (B’, B”, B4) = (B Vr, B .V$, 
B. Vd), are specified as input to the code. These components are specified either by 
giving their values on a three-dimensional grid, with uniform grid spacing in Y, 9, 
and 4, or by giving their Fourier coefficients on a set of radial coordinate surfaces 
uniformly separated in r. If the values are given on a grid, the code uses a fast 
Hartley transform (see Section IV) to Fourier decompose on the radial coordinate 
surfaces. As described below, the code interpolates the Fourier coefficients radially 
to follow magnetic field lines. The magnetic field can also be specified by an analytic 
expression. This mode of operation does not require any interpolation to follow 
field lines and is therefore useful for rapid study of a range of parameters. 

To avoid problems at the coordinate axis due to the singular behavior of B3 
(which goes as l/r for r near zero), field lines are followed in the “pseudo- 
Cartesian” coordinates 

5 = r cos 3, rj = r sin 3. (20) 

The ordinary differential equations to be integrated are then: 

dt B’ B3 -=- 
dqi B4 

cos9---rsin9, 
B+ 

d’ B’ sin3+crcos9. -=- 
dq5 B” B” 
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For an initial condition (to, v],, do), we integrate these equations with respect to # 
and store the coordinates at equally spaced intervals dd, giving a sequence of vec- 
tors (ti, q,, j 34) at which we evaluate the functions to be sampled. We use a 
variable order, variable stepsize predictor-corrector algorithm (the NAG routines 
d02caf and d02cbf), which evaluates values at intermediate sample points by inter- 
polation. The code assumes (and verifies) that B6 > 0 at each step (this simply 
states that the Jacobian between magnetic and Cartesian coordinates is well defined 
in the toroidal domain). This condition is violated ior reversed-field pinches, but is 
almost always true for tokamaks and stellarators. The contraint on the toroida! 
component of B is not fundamental to our method: but comes from our choice of 
the toroidal angle. 

The contravariant components of B, as well as the quantities X, y, 3, and ii, in 
general must be evaluated along the field lines by interpolation. We interpolate the 
Fourier coefficients of these quantities as a function of I’, and then sum the inter- 
polated Fourier coefficients to obtain the value of the function at a given 3 and 4. 
This procedure allows us to represent accurately the high frequency Fourier com- 
ponents near the origin by using the analyticity of these functions. Analyticity 
implies that the functions have a convergent Taylor series expansion around the 
coordinate axis I’ = 0 in the variables 5 and ‘1. This forces a Fourier coefficient uPi, ,)L 
to have the form P(c~ + cZr2 + c4r4 + . .). Directly interpolating the high frequency 
components using a low order\interpolotation scheme would give poor accuracy 
near the origin. We factor out the leading P power of the Fourier modes, for all m 
up to a maximum value 172 = maxexp, and then use a cubic spline to interpolate the 
normalized Fourier coefficients in the radial direction. For m > maxexp we factor 
out only PilxciP. The ma.ye.x-p cutoff is necessary because the numerically evaluated 
Fourier coefficients are accurate only to a finite precision. When n? is sufficiently 
large that the Fourier coefficients become smaller than this precision at the first few 
grid points near the origin, pulling out an P amplifies the numerical errors there. 
In practice, we find that setting maxexp 2 3 gives satisfactory results. 

For our radial spline interpolation we use “not-a-knot” boundary conditions 
[ 131 at I’ = 0 and I’ = 1. We have found that the so-called “natural” boundary con- 
dition available in many spline packages, which imposes the constraint that the 
second derivative of the function vanish at the boundaries, gives a serious 
deterioration in accuracy near the boundaries. This is not too surprising at the 
outer boundary, since there is no reason to expect the Fourier coefficients to sati+! 
this constraint there. At the origin, however, the solution should satisfy that boun- 
dary condition if we pull an Y-r out. The problem again arises at large m because 
of the finite precision of the numerical Fourier transform. 

We need to find the magnetic axis to define the coordinate @. and to choose 
initial conditions (r,,, 3,, do) f or our field line integrations on a sequence of 
magnetic surfaces radiating out from the axis. The sequence of initial conditions 
implicitly defines the radial magnetic coordinates, pin The intersection of the 
magnetic axis with a vertical symmetry plane of the domain must he in the mid- 
plane of the torus. We solve for this point by labeling the intersection of the two 



434 REIMAN AND GREENSIDE 

planes (the d = 0 plane and the midplane) with the Cartesian coordinate X, and by 
defining a function f(x) to be the distance of the point defined by the return map 
from the initial point X. Any magnetic axis is a zero of J: We search for this zero by 
using a secant method (NAG routine c05ajf [ 121). We choose our tolerance for this 
routine to be an order of magnitude smaller than the tolerance in the Fourier 
decomposition. 

In restricting our search for the magnetic axis to one dimension, we have made 
essential use of the assumed symmetry. In the absence of symmetry, it would be 
necessary to search a two-dimensional plane. The magnetic axis would again corres- 
pond to a zero of the distance defined by the return map from the initial point. 

Given the location of the magnetic axis, the code follows L + 1 field lines, with 
initial points lying on the intersection of a symmetry plane with the midplane, 
equally spaced in the Cartesian x coordinate between the magnetic axis and the 
boundary (including the axis and the boundary). The L + 1 field lines determine 
L + 1 coordinate surfaces, equally spaced in p between the magnetic axis (p = 0) 
and the outermost surface (p = l), thus defining our p coordinate. The code 
simultaneously follows L of the field lines (excluding the surface) by treating the L 
pairs of associated ode’s as 2L “coupled” equations. This allows the expensive field 
evaluations to be vectorized. We pay the price that the step size must be the same 
on all the field lines. 

Given the values of a function at the sample points (ii, qj, .i dd), we can perform 
a discrete Fourier transform in 4. This is complicated by the fact that the data is 
not periodic in d. In the following section, we describe how we perform Fourier 
decompositions along the magnetic field lines, and we discuss the associated errors. 

IV. FOURIER TRANSFORM ALONG FIELD LINES AND ITS ACCURACY 

In the previous section we showed how a precise determination of i allows us to 
identify directly the spectral lines of the one-dimensional Fourier transform along a 
field line with the spectral lines of a two-dimensional Fourier transform in magnetic 
coordinates. We then presented an algorithm for calculating I efficiently and 
precisely. At each step, this algorithm requires a Fourier decomposition of 6,z$ 
along field lines, using the current value of l. Similarly, the Fourier decomposition 
of any function in magnetic coordinates requires, as a first step, the Fourier decom- 
position of that function along field lines. In this section we describe how we 
Fourier decompose functions along magnetic held lines, and we analyze the 
resulting numerical errors. We will see that the accuracy with which we can deter- 
mine the Fourier coefficients numerically is limited by the distance over which the 
field lines have been followed. Following field lines is the most time-consuming part 
of the code. We therefore want to follow the field lines the minimum distance 
consistent with the required precision. As we will see, the required distance can be 
strongly influenced by the presence of low order rational surfaces. 

We need to obtain one-dimensional Fourier decompositions of the form given by 
Eq. (17). This expression is not periodic in 4 (except for the special cases where $ is 
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rational). To complicate matters further, near those rational surfaces l/N = ,$nr 
where u,,,, is nonzero, the periodicity length of the sin[(&4-jnz) @] term becomes 
large, making this term difficult to distinguish from the m = 0, n = 0 term. The 
problem arises more generally whenever the periodicities of any two different terms 
in Eq. (17) are nearly equal. These issues are the primary subject of this section. 
Before turning to them, we say a few words about the numerical method we use for 
performing fast Fourier transforms. At the end of this section we will turn to the 
question of interpolating the amplitudes in Fourier space, to go from a discrete 
Fourier transform to the required coefficients at nN - /?I?. 

To perform our fast Fourier transforms, we use a fast, highly vectorized. machine 
language routine written by 0. Buneman [14]. This routine uses the Hartley 
kernel, cos + sin, rather than the cos + i sin of the usual Fourier transform, This 
avoids complex arithmetic when transforming real data. For odd functions [such as 
e(d)], the coefficients of the sin terms, .s,, are expressed in terms of the fast Hartley 
transform (FHT) coefficients, N,, by 

where tz is the number of points. For even functions, the corresponding formulas for 
the coefficients of the cosine terms are: 

c,,,,? = H i- ,,.,2/vr II, 

cj = (H, + H,, _ j);\;i, 0 < j < i7!‘2. 

In determining the FHT coefficients for symmetric functions, the known symmetry 
property could, in principle, be used to reduce the required integration length by a 
factor of two. That is, we could integrate from C/I = 0 to some 4 = dr, rather than 
from -& to CJ$~ We found that this integration over half the interval introduces 
considerable numerical noise in the tail of the Fourier spectrum. (Note that 
although we apply our FHT from -dF to dr, we only follow the field fine from 
4 = 0 to 4 = #r, and we reflect the data using the appropriate symmetry.) 

The functions whose Fourier representation we seek are not, in general, perioaic. 
We therefore must multiply them by an appropriate window function to reduce the 
discontinuity at the boundary of the periodic extension before performing a 
numerical Fourier decomposition. We use a Gaussian window, proportional to 
exp[-(&‘d,)‘]~ As measured by various figures of merit, the Gaussian window 
does nearly as well as the considerably more complicated windows which are also 
in common use [IS]. It has the advantage that analytical estimates of expected 
errors can be obtained. An outline of the derivation of the analytical estimates is 
given in Appendix A. The relative error in each Fourier coefficient due to the finite 
integration length dr is 

-L 5 exp[ -cd, ‘4 )I]. ,- 
&t @f 

F! g 
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The error in the FHT due to interference by a second mode of amplitude A is 

where 

Ak=(n,N-lm,)-(n,N-im,) (23) 

is the distance in k space between the modes, with (n, N, ml) and (n,N, YIZ~) the 
mode numbers of the two modes. This interference, often called “spectral leakage,” 
arises from the nonorthogonality of the Fourier modes in Eq. (17). The spectral 
leakage from a set of modes is linearly additive. Equations (21 j and (22) have been 
obtained by expressing the integral of a truncated Gaussian times a trigonometric 
function in terms of the error function, and using an asymptotic expansion of the 
error function in dr/dg [16]. The second term in Eq. (22) dominates in the large k 
tail of the Fourier spectrum and determines the smallest amplitudes that can be 
correctly identified. It gives the tail of the spectrum a noisy appearance when the 
spectral amplitudes are plotted logarithmically. 

As we get close to a low order rational surface, Ak can become small. This 
requires an increased integration length, #r, to maintain the accuracy of the 
numerical Fourier transform. The problem only arises near those surfaces where 
i/N = n/m, with 0 < r~z ,< 2,1”1 and -2X < I?< 2-4’. Right at such a rational surface 
Ak can become zero, making it impossible to apply our Fourier transform method 
there. To handle this problem, we determine the nearly overlapping (in k-space) 
Fourier coefficients on the coordinate surface closest to such a rational surface by 
interpolation. Taking the average of the coefftcients with the same m and n on the 
two neighboring coordinate surfaces gives a second-order accurate interpolation 
because of our uniform radial grid. Before averaging, we pull out an yin factor, up to 
a maximum value of nz = maxexp, as described in the discussion of interpolation in 
Section III. The code chooses c$~ and df to make the errors everywhere else-as 
described by Eq. (21) and the first term in Eq. (22)--less than ftprec/2 and A 
ftprec/2, respectively. The precision of the Fourier amplitudes, ftprec, is,an input 
parameter to the code. Note that the second term of Eq. (22) is bounded by 
Eq. (21). In the presence of low order rational surfaces, the Ak which determines 
the required integration length is determined by the local shear and the radial grid 
spacing. As we increase the number of radial grid points, the minimum dk 
decreases, requiring increased 4,.. For a fixed number of radial grid points, decreas- 
ing the shear also increases the required integration length. 

The constraint on the first term of Eq. (22) gives 

/ - 4 ln( ftprec/2 ) 
dg=\ Ak (24) 

The code solves for dr from Eq. (24) and the constraint on Eq. (21), again using a 
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secant method (NAG routine c05ajf). In determining 4, and &, rather than let dk be 
the distance between modes, the code uses an effective (somewhat smaller) Ak to be 
described below. 

We take the interval over which we carry out the FHT, [ -drn, dm], to be 
greater than the interval over which we follow field lines, [ -dr, df]. This effectively 
interpolates the spectral amplitudes in k. We fill the interval between & and dn, by 
extending the tail of the Gaussian. The length of the tail is chosen so that there are 
at least five points between the spectral peaks, 

where Ak,,, is the minimum value of Ak. This gives a constraint on the number of 
points needed in the discrete Fourier transform, 

In addition. N, must be a power of 2. 
We must interpolate between points in k space to evaluate the transform at 

nN -lrn. (This gives the Fourier coefficient arIm. ) To do this, we fit the three points 
nearest k = nN -pn to a Gaussian 

f, exp[ -a(k- ko)‘]. 

If f,, f2, ,fi are the values of the FFT at the points k,. k,, k,, then: 

(k, - ko)’ - (k, - k,,)’ 
il= 

Wf2/.fl) ’ 

.fg=ffi exp((kl:ko)‘]. 

Rather than evaluating the Gaussian at k = nN-in, we use f, for the desired 
amplitude. This accelerates the convergence of our iterative scheme for J’. Although 
this scheme is extremely accurate if we are near the peak of the Gaussian it is 
poorly behaved if we are on the tail of the Gaussian, or if we are so far from the 
peak that the behavior is nongaussian. For that reason, we first perform some 
checks, before applying Eqs. (27)-(29 J, to be sure that we are near the peak. If any 
of these tests are failed, we use an alternative value for the amplitude. If the three 
FHT values are not all the same sign we know that we are far from the peak of a 
Gaussian, so we take the amplitude to be zero. Otherwise, if the center point does 
not have the largest amplitude we use the value off, or f3, whichever is larger. 
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For our interpolation, we require the FFT coefficients at three points near 
k = nN-/M. To ensure that the amplitudes at each of these points is within a 
precision ftprec, we take the Jk in Eq. (22) to be the minimum distance in k space 
between any of these points and a neighboring spectral peak. 

How accurately do we need to determine f? For k=nN-im, an error Af in ,f 
gives an error Sk = --m Af in k. We want this to be less than half the distance 
between the points in our spectrum, 

Once this is satislied, our interpolation algorithm is eliminated as a source of 
numerical error. There is an additional error which arises directly from the Fourier 
decomposition of 0 -@, due to the inaccuracy in the numerical calculation of 1. 
Relative to spectral leakage, this contributes an error -4ln(ftprec/2) At/AX-. The 
code verifies that both these contributions to the numerical inaccuracy of the 
Fourier decomposition are small. 

V. EXAMPLE AND DISCUSSION 

In the preceding sections we have described our numerical algorithm and its 
implementation. In this section we present, as a concrete example, the numerical 
solution of Eq. (3) for a stellarator vacuum field. This gives the lowest order (in 8) 
pressure-driven current. We consider an I= 2 stellarator with parameters 
corresponding to the ATF device at Oak Ridge [17]. 

To obtain our vacuum field we solve Laplace’s equation for the scalar potential 
of the magnetic field, 

B=Vx, (30) 

with the boundary condition n .Vx = 0, where n is the unit normal to the outer flux 
surface. Laplace’s equation is solved using a Fourier representation in the toroidal 
and poloidal angles, and second-order finite differences in the radial direction, with 
the resulting block tridiagonal matrix inverted by Gaussian elimination C-1, IS]. 
For the example discussed in this section we used twenty radial grid surfaces 
(L = 20) and 77 Fourier modes (0 d m < 10, - 3 d 12 d 3). The outer flux surface is 
specified by the Bessel function solution for the cylindrical vacuum field, 

x = B,d + b, I,( Nr/R j sin(29 - 2N4), (31) 

where N = 12 is the number of periods, and R = 7 is the major radius. The ratio 
bz/B, determines the rotational transform. We choose a value which is appropriate 
for ATF, 2Nb,/Bo = 0.633, giving a rotational transform which ranges from 0.308 at 
the axis to 0.975 at the edge. 

The vacuum field has rational surfaces for 12.3 < nz/tz < 39.0. The lowest order 
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rational surface is at I= 2 (n = 1, M= 13). For ,K < 6 there is insufficient angular 
resolution for the code to see the rational surfaces, and their presence does not pose 
any difficulties. When JY = 7, ,1~” b 1, the n = 1, HZ = 7 mode is indistinguishable 
from the n = 0, m = 6 mode at the f = +$ rational surface. Similarly, the II = 0, I?[ = 7 
mode is indistinguishable from the n = 1, nz = 6 mode there. There is a single pair of 
indistinguishable modes at the I= 4 surface. If there is a coordinate surface very 
near the I= # or I= $ rational surface, dkrnin is small. (Throughout this section we 
use Ak,,, to denote the minimum value of Ak on a given coordinate surface. The 
quantity 3k was defined in Section IV.) As discussed in the previous section, this 
problem is handled by using interpolation to calculate the amplitudes of the nearly 
indistinguishable modes on the coordinate surface nearest the rational surface As 
.K is increased, the number of required interpolations also increases. 

In practice, it does not always happen that a coordinate surface falls close 
enough to the rational surface to pose a problem. The criterion that we have ado?- 
ted is to interpolate on those interior coordinate surfaces where dk,,, has a local 
minimum as a function of the radial coordinate p, if the local value of 3k,+ is 
smaller than that at the first and last radial coordinate surfaces. We then calclllate 
the global minimum of Ak, disregarding these near rational coordinate surfaces on 

which we will interpolate. This is the value of Ak that we use to determine the 
required integration lengths. Even on the near rational coordinate surfaces, we 
interpolate only those modes belonging to mode pairs with Ok less than this globai 
minimum. For a monotonic i profile. Akmi, is typically a monotonic function of p as 
long as ./Z is sufficiently small that the code does not see any rational surfaces. Even 
for larger J, dlimi, may remain monotonic if the coordinate surfaces do not hag- 
pen to fall near any of the low order rational surfaces. In that case no interpolation 
is required, and rhe code does not interpolate. For nonmonotonic j, die,,, is 
generally nonmonotonic even in the absence of low order rational surfaces. The 
code does interpolate in that case whenever the required integration length ca:: be 
decreased. 

For our ATF example we take .K = 10, : 1. = 3. The code interpolates Fourier 
coeflicients on surfaces 15. 17, and 19, corresponding to Akmi, = 0.024, 0.097, G. Z3, 
respectively, with f= 0.598, 0.713, 0.871. Calculating rhe global minimum of 4k over 
all the surfaces, excluding those on which we interpolate, gives a value of 0.190. To 
obtain an accuracy ftprec = 10-j the code follows the field lines 20 times arcund 
the torus. The largest amplitude mode interpolated in calculating the Fourier trans- 
form of 8 -,@ is the 177 = 4, 17 = 1 mode on surface 19, with an interpolated 
amplitude of 9.3 x lo-“. Its values on the neighboring coordinate surfaces are 
9.0 x 10-” and 9.6 x 10-5, with a difference of less than ,frprec between them. The 
largest Fourier mode is the 07 = 2, IZ = 1 component, with a maximum ampli:ude 
of about 0.06 at r=0.6. This is considerably smaller than the ti perturbation 
considered in the example of Section III. 

The Fourier components of the pressure-driven current are determined directly iz; 
terms of those of the Jacobian by Eq. (14). Note that although there may be near- 
zero terms in the denominator of this equation. the Jacobian is 1,/B”, a finite amd 
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well-behaved quantity. This enables us to calculate accurately near-resonant terms. 
The solution requires only that we Fourier decompose l/Bb. In doing so, we again 
interpolate the nearly indistinguishable mode pairs. We have set maxexp = 5 for the 
interpolations. The interpolated mode having largest amplitude is now the m = 4, 
II =2 mode on surface 19, with an interpolated amplitude of 0.02902. At the 
neighboring coordinate surfaces, the mode has amplitudes of 0.02236 and 0.03718. 
The error in the interpolation is equal to the second derivative of the mode 
amplitude with respect to p times Ap’/2, where Ap = 0.05 is the radial grid spacing. 
Evaluating the second derivative numerically, we estimate the error to be 6. x IO-‘. 
For this particular mode the numerical accuracy is therefore dominated by the 
accuracy of the radial interpolation. We will see that the overall accuracy for this 
calculation is determined by the amplitude of the neglected Fourier modes. 

Figure 1 shows the numerically calculated Fourier transform of l/B” with respect 
to d, along a magnetic field line lying in the outermost flux surface. The horizontal 
coordinate is the mode number, with peaks at nN -.M. Instead of discrete spectral 
lines, the numerical fast Fourier transform with a Gaussian window gives a set of 
Gaussian shaped curves. They appear as narrow quadratic curves on our 
logarithmic plot, centered at the points UN-pn. The width of the Gaussians is 
about 3.3/d, = 0.09. The four highest peaks have been labeled in Fig. 1 with their 
mode numbers, (n, m). The clustering of peaks in this figure is due to the toroidal 
coupling to the helical modes satisfying m = 2n. For the fast Fourier transform, we 
have evaluated 4096 Fourier coefficients along each field line, giving a horizontal 

nN-cm 

FIG. 1. Numerically calculated Fourier transform of l/B” with respect to 4 along a magnetic field 
line lying in the outermost flux surface for the ATF vacuum field. The four largest mode amplitudes have 
been labeled with their mode number, (n, m). 
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resolution of about 0.018. The rotational transform on this flux surface is calculated 
to be i = 0.9752, with an associated value of dkmi, = 0.2709. It is apparent from 
Fig. 1 that the largest neglected Fourier mode has an amplitude nearly equal to 
1. x lop3 at the outer flux surface. It has mode numbers m = 8, II = 4. The 
corresponding Fourier mode of 1’ has an nN -$m in the denominator, giving a 
(neglected) contribution of roughly 2. x 10-j in amplitude. 

Figure 2 shows the p dependence of the four largest Fourier modes. The mode 
amplitudes are largest at the outer boundary. They are smooth functions of p, going 
like p”’ near the coordinate origin, but deviating from this near the outside. 

In solving the magnetic differential equation for the lowest order pressure-driven 
current in a stellarator vacuum field, we have encountered a number of subtle issues 
related to the presence of low order rational surfaces. We have seen how these 
issues are handled automatically by our code, with no need for intervention. 
Integration lengths are adjusted automatically to compensate for proximity to the 
low order rational surfaces. Nearly indistinguishable mode pairs are calculated by 
interpolation. Because the code works in magnetic coordinates, the sma.11 rrN -(>I? 
denominators factor out, and there is no need to manipulate nearly singular quan- 
tities. In the absence of large islands and stochastic regions, the algorithm presented 
here provides an accurate, efficient method for solving magnetic differential 
equations. The presence of islands and stochastic regions raises a host of new issues, 
which are the subject of continuing research. 

I1 

0.241 

III 1 I 
0 0.2 0.4 0.6 0.6 1.0 

P 

FIG. 2. The four largest Fourier modes in the transform of I:‘@, plotted as a function of p. The 
curves have been labeled with the corresponding mode numbers (n. ni). 
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APPENDIX A: ESTIMATES FOR NUMERICAL ERRORS 

In this appendix we outline our derivation of the estimates for numerical errors 
given in Section IV. We have functions of d of the form of Eq. (17), and we wish to 
determine the coefficients of the Fourier modes. To handle the nonperiodicity we 
multiply by the window function exp[ - (d/$,)‘]. T o obtain the Fourier transform, 
we multiply by sin(k’d) (or cos(k’d)), where k’ = rrj/& for j an integer, and we 
integrate from 4 = -dr to C$ = dr. Each Fourier mode of the function makes a con- 
tribution which is half the real part of 

j:4r expC -(4/h)” + i(k - W 41 dd f [y4, expl - (d/~f)2 + 4k + k’) dI44 (Al) 

where k is the wave number of the mode, and where the - and + signs correspond 
to odd and even functions, respectively. Equation (Al) can be expressed in terms of 
error functions, 

~~~,exp(-C(k-k’)~,/212)erf id,-; (k-Wd, I 
T~~~,exp~-[(k+k’)~,/2121erf d~/&-~(k+k’)d, . 1 (A21 

To estimate the value of the integrals we use the asymptotic expansion of the error 
function, valid for d/d, large, 

erf(z j - 1 - exp( - i’)/m z. 

The dominant error comes from the k-k’ terms. For k= k’ we recover the nor- 
malization necessary to evaluate the Fourier coefficient, and we obtain the relative 
error due to finite integration length, Eq. (21). Dividing the value for k # k’ by that 
for k = k’, we determine the relative error due to spectral leakage, Eq. (22). 

APPENDIX B: TABLE 

The Most Important Numerical Parameters Discussed in This Paper, 
listed in the order in which they are defined in the paper 

Parameter Detinition 

-H 
“1” 
L 
N 

maxexp 

Maximum poloidal mode number (input) 
Maximum toroidal mode number per period (input) 

L + 1 is number of coordinate surfaces (input) 
Number of periods (input) 

Maximum radial power pulled out of Fourier coefficient (input) 
Distance for which field lines followed (internal) 

Width of gaussian window used for Fourier transformation (internal) 
Accuracy of Fourier coeffs (input) 

Note. After each we have specified whether it must be given to the code as input or is calculated 
internally from the input parameters. 
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